Mapping of a segment of the Romanche Fracture Zone: A morphostructural analysis of a major transform fault of the equatorial Atlantic Ocean

Geology ◽  
1991 ◽  
Vol 19 (8) ◽  
pp. 795 ◽  
Author(s):  
José Honnorez ◽  
Jean Mascle ◽  
Christophe Basile ◽  
Pierre Tricart ◽  
Michel Villeneuve ◽  
...  
2014 ◽  
Vol 86 (2) ◽  
pp. 571-588 ◽  
Author(s):  
KENJI F. MOTOKI ◽  
AKIHISA MOTOKI ◽  
SUSANNA E. SICHEL

This paper presents gravimetric and morphologic analyses based on the satellite-derived data set of EGM2008 and TOPEX for the area of the oceanic mantle massif of the Saint Peter and Saint Paul peridotite ridge, Equatorial Atlantic Ocean. The free-air anomaly indicates that the present plate boundary is not situated along the longitudinal graben which cuts peridotite ridge, but about 20 km to the north of it. The high Bouguer anomaly of the peridotite ridge suggests that it is constituted mainly by unserpentinised ultramafic rocks. The absence of isostatic compensation and low-degree serpentinisation of the ultramafic rocks indicate that the peridotite ridge is sustained mainly by active tectonic uplift. The unparallel relation between the transform fault and the relative plate motion generates near north-south compression and the consequent tectonic uplift. In this sense, the peridotite massif is a pressure ridge due to the strike-slip displacement of the Saint Paul Transform Fault.


Author(s):  
Thomas Campos ◽  
Kenji Motoki ◽  
Susanna Sichel ◽  
Leonardo Barão ◽  
Marcia Maia ◽  
...  

This paper discusses the tectonics of the St. Peter and St. Paul Archipelago (SPSPA) in the Equato-rial Atlantic Ocean, based on the joint-system geometry which show a North-South shorten-ing/transpressional uplift tectonism, is active leading to exhumation of the sub-oceanic mantle. These islets are the summits of a sigmoidal submarine ridge formed by mantle ultramafic rocks. The ridge is crossed by the principal transform deformation zone of the northern transform fault of the St. Paul Multifault System. The South flank ridge exposes serpentinized mantle perido-tites, while the North flank exposes strongly deformed/fractured ultramylonites, recording duc-tile and brittle deformation at lithospheric conditions. The SPSPA show multiple joint systems cutting mylonitic foliation of the exposed rocks, forming three main families: high-angle paral-lel joints of tectonic origin, serpentinization-related joints with random direction and load-release low-angle parallel joints. The tectonic joints show an average direction of N31°E and N28°W, forming a conjugate system with a N1ºW compression axes, coherent with a trans-pressive stress field. Accordingly, the earthquakes focal mechanism close to the islets also shows N-S compression. The previously reported active uplift with an average rate of 1.5 mm/year and the directions of the joint system here reported agreeing with a present-day active N-S compres-sive field at a high angle with the direction of the transform fault.


Sign in / Sign up

Export Citation Format

Share Document